
FeatureLanguage: Automatic Generation of
Application Backend for Model-Based

Programming Course Projects
Erica De Petrillo

Department of Electrical and Computer Engineering
McGill University
Quebec, Canada

erica.depetrillo@mail.mcgill.ca

Gunter Mussbacher
Department of Electrical and Computer Engineering

McGill University
Quebec, Canada

gunter.mussbacher@mcgill.ca

Abstract—University programs in software engineering or
computer science increasingly include foundational courses in
model-driven engineering. Building a substantial application
through a term-long group project is one hands-on, practical
way to learn the concepts taught in these courses. While learning
by example can be very beneficial, providing students of these
model-based programming courses with solutions in the form of
complete working applications can be a real challenge due to
time and resource constraints. In this paper, we argue that by
specifying high-level requirements using our FeatureLanguage,
we can completely generate the backend (i.e., Controller and
Model) of a Model-View-Controller (MVC) application suitable
for a university-level course. The proposed FeatureLanguage
is an extension of a domain model with a specification of the
different features the application should be able to accommodate
as well as the constraints that need to be enforced. First, we
discuss the FeatureLanguage, followed by an explanation of
the different transformations from the FeatureLanguage to the
backend code. We demonstrate that the complete backend can
be generated and compare a generated MVC application with
its handwritten counterpart. We argue that it is also feasible to
completely generate a Controller test suite following a behaviour-
driven development approach as well as the frontend of the MVC
application, which we will explore in future work.

Index Terms—Model-Driven Engineering, Domain Model,
Model-Based Programming, MVC Application, Model Transfor-
mation

I. INTRODUCTION

Model-Driven Engineering (MDE) is used for engineering
numerous systems of ever-increasing complexity [25]. Soft-
ware engineering or computer science university programs
often require their students to take at least one model-based
programming course, and because of the distinctive nature of
this subject, these courses usually take a hands-on approach.
It is more and more common for students registered in these
courses to be expected to produce, at the end of the semester,
a Model-View-Controller (MVC) application using model-
driven engineering. Sometimes, these types of projects are
even done in an iterative manner, giving students the oppor-
tunity to learn from their mistakes throughout the semester.
To do this, course instructors must be able to provide a
sample solution so that their students may learn from example.

However, implementing an MVC application from scratch can
be quite time-consuming, so having to do that every time the
course is offered (and the project changes) is simply not viable.

We define FeatureLanguage, a domain-specific language
that aims to help course instructors or teaching assistants gen-
erate entire MVC applications using the material they already
typically prepare for these types of projects. While efforts exist
to generate boilerplate code for the backend [3] [17] as well as
for functional tests, there is currently no tool specifically for
our purpose. Using only a domain model and the instructions
provided to students (namely the list of constraints to be
respected and the desired features), it is possible to create
a FeatureLanguage model within minutes. From this, we can
currently generate the entire backend of the MVC application,
specifically the Model and Controller layers, without manually
writing any code. This is possible thanks to novel model-to-
code transformations as well as leveraging existing ones. In
the future, we hope to expand this process to also generate the
View layer as well as the test suite.

In the remainder of this paper, Section II presents back-
ground information crucial to the understanding of the Feature-
Language and the transformation pipeline. Section III expands
on a motivating example. Sections IV and V respectively
explore the FeatureLanguage metamodel, and explain the
transformation pipeline. We then touch upon related work in
Section VI, before concluding the paper in Section VII.

II. BACKGROUND

The heart of model-driven engineering is, as the name
suggests, models. For our generation purposes, we use domain
models designed with Umple [14], and their data is then
processed using Acceleo transformations [1]. Below, we will
define all three of these pieces of the puzzle. But first, let us
take a deeper look at MVC applications [23], as these are the
basis for this generation initiative.

A. MVC Applications

An MVC application is an application that is separated into
three layers, namely the Model, the View, and the Controller,



1namespace ca.mcgill.minimalresto.model;
2
3class MinimalRestoApp {
41 <@>- * Table tables;
51 <@>- * Order orders;
6}
7
8class Table {
9unique immutable Integer number;
101 <@>- 0..* Seat seats;
11enum Location { Indoors, Patio };
12Location location;
13lazy Integer maxNumberSeats;
14}
15
16class Seat {
17boolean isArmChair;
18}
19
20class Order {
21Date date;
22Time time;
23autounique number;
24* orders -- 0..1 Table tables;
25}

Listing 1: Umple Model of MinimalRestoApp

which can be seen on the right of Figure 3. The View is
the User Interface (UI) with which the user interacts. The
Controller is the brain of the operation. It performs actions on
the application’s objects. These actions can be broken down
into four categories: Create, Read, Update, and Delete, or
CRUD for short. The Model contains the different classes of
the objects that are used in the application. These objects are
persisted in the database. The View communicates with the
Controller, and the Controller communicates with the Model,
but in general, the View should not have access to the Models.
Thus, when the Controller must pass a Model to the View
(in the case of Read actions for example), it is done through
transfer objects (TO). Transfer objects are a representation of
Model classes that do not expose the makeup of the Model to
the View, and by extension, to the user.

B. Domain Models and Umple

Domain models are specified with class diagrams and
used to populate the Model layer of an MVC application.
Umple [14] is a modeling tool which simplifies model-driven
development by streamlining domain model design. In List-
ing 1, we can see the Umple model which is equivalent to
the MinimalRestoApp domain model discussed in Figure 1.
We first start by defining a namespace, which corresponds to
the package name for the Model layer of our MVC application
(line 1). Afterwards, we describe each class (e.g., Table in line
8) in a class block. Inside each block, we list the corresponding
attributes and the associations.

An attribute declaration is made up of an attribute type and
an attribute name (e.g., Integer number in line 9) and usually
represents a simple, single-valued piece of data. Umple has
several built-in attribute types: Integer, Boolean, and String
are some of the most commonly used. If we need an attribute
type that does not correspond to any of the built-in ones, we
may use the enum keyword, and define an enum by giving it a
name and its accepted values, as can be seen for the Location
attribute in Table (line 11). An attribute may be unique, which
means that each instance of a class must have a different value
for that attribute, (e.g., number in line 9). An attribute can

Fig. 1: Minimal Restaurant Application Domain Model. Note
that, in contrast to Umple, Ecore cannot declare Table.number
as unique and immutable, Order.number as autounique, and
Table.maxNumberSeats as lazy.

also be autounique, which is essentially the same as unique,
apart from the fact that the attribute is set automatically at
instantiation, without any input from the user (e.g., number
in line 23). These unique or autounique attributes are usually
used to differentiate one instance from another. Attributes can
also be lazy, which means that they are not needed in the
class constructor. They are initialized to 0 for integers, false
for booleans, and null for anything else [15]. An example of
that is maxNumberSeats in Table, which does not need to be
initialized when a Table is first created (line 13). Attributes can
also be immutable (line 9), which means that once they have
been set, they may not change for the rest of the instance’s
lifecycle.

An association declaration is made up of the multiplicity of
the class it is declared in, followed optionally by that class’s
role name in that association. Different symbols are used
for bidirectional associations (−−), unidirectional associations
(–>), and compositions (<@>–)). Bidirectional associations
are for when both classes are aware of each other, unidirec-
tional associations are for when only one class is aware of the
other, and compositions are for when a class is contained by
another. See line 10 for an example of composition between
Table and Seat and line 24 for an example of bidirectional
association between Table and Order.

Note that the example does not include generalization as
this concept is left for future work on FeatureLanguage.

C. Model Transformations

Model transformations are used for a specific purpose,
take in input models, and create output models, based on a
specification [22]. Model transformations are at the core of
initiatives like the Model-Driven Architecture (MDA) [8]. We
may transform a model into another model during a model-
to-model transformation with technologies like ATL [2]. We
may instead transform a model into text during a model-to-
text transformation with technologies like Acceleo [1]. This
is essentially what happens when we generate a Controller
class from our FeatureLanguage model. Indeed, we use the
information provided in the FeatureLanguage model to fill in a



template that creates a Java file for the Controller. This is done
using Acceleo, which leverages OCL [10] queries to allow us
to retrieve the information we need from the FeatureLanguage
model.

III. MOTIVATING EXAMPLE

Consider a group project for an introductory class on
model-driven engineering, typically taken during the first or
second year of a university program in Software Engineering,
Computer Engineering, or Computer Science. Students would
be required to create an MVC application for some sort of
management software, like a reservation or asset management
system for example. The instructor would provide a descrip-
tion of the problem domain, a list of features the solution
should be able to fulfill, as well as the constraints posed
on some domain concepts. The instructor would also provide
Gherkin scenarios [6] to facilitate the testing of the appli-
cation (more specifically the Controller code). The skeleton
code generated from the Gherkin scenarios by Cucumber [4]
would be provided to the students as well. Students would
be expected to complete this project throughout the term, in
groups of about six people. Overall, they would be required to
complete around 16 features, like adding or updating an asset.
The project would also require the implementation of about
25 constraints, and about 150 unit tests derived from several
Gherkin scenarios.

Currently, the implementation of the project is minimally
automated, and most steps of the project are done manually.
Students start by creating a domain model with Umple [14],
which will allow them to generate the Model code. Then, they
implement step definitions for the provided Gherkin scenarios
and constraints, followed by the Java implementation of the
Controller to pass all Gherkin scenarios. Afterwards, they can
move on towards designing the View. This is done through
specifying a layout with SceneBuilder, which in turn generates
layout code in XML format, and manually implementing
the JavaFX [7] Controller. Lastly, even though a sample
persistence layer is provided, students are still required to
adapt it to their project in order to save the data to JSON
files.

While the importance of doing this hands-on work cannot be
neglected for students, being able to automate this work could
be beneficial, for instructors and students alike. For example,
an instructor teaching this kind of course could be greatly
aided by an application that could automatically generate the
solution to this management software project. Being able to
automate the creation of Gherkin scenarios would significantly
reduce the effort required to invent a new problem description
for each course offering. Furthermore, students would be
provided a more complete and thorough solution from which
they would be able to learn. Using the instructions provided
for the project, namely the features and constraints, as well
as a domain model, there is the possibility of automating not
only the generation of the Model (as is currently the case)
but also the full Controller implementation. While generating
the Gherkin scenarios, the full implementation of the step

definitions, and the UI could also be achieved, this is outside
the scope of this paper and left for future work.

To motivate the proposed FeatureLanguage, let us look at
a simple restaurant management application. The Minimal-
RestoApp system showcases all key modeling features used by
students of model-based programming classes, except general-
ization: classes, attributes with different types, enumerations,
as well as associations and compositions with different multi-
plicities. Furthermore, attributes may be designated as lazy and
instances may be identified by a unique or autounique attribute
or by a list index. The domain model of the MinimalRestoApp
in Figure 1 contains four classes, namely Table, Seat, Order,
and the MinimalRestoApp root class. The attributes of the
Table and Order classes have the following six constraints:

• The Table’s reference number must be greater than 0:
Table.number > 0

• The Table’s reference number must be unique
• The Table’s reference number must be immutable
• The Table’s maxNumberSeats must be lazy
• The Table’s location must be either “Indoors” or “Patio”
• The Order’s reference number must be autounique
The first constraint would be provided by the instructor in

the problem description. The fifth constraint refers to the enu-
meration definition. The remaining constraints correspond to
the Umple unique, immutable, lazy, and autounique keywords,
respectively. Hence, the last five constraints are derived from
the Umple domain model.

While Table instances and Order instances are uniquely
identified by their number attributes and the root class Min-
imalRestoApp is a singleton by definition and does not re-
quire an identifying attribute, Seat instances are identified
by their index in their Table’s list. While Umple allows the
specification of identifying attributes, it does not support the
explicit designation of a list index for the purpose of uniquely
identifying instances in the list.

For each of the three non-root classes, we can Add, Remove,
Display, or Update instances. It is worth mentioning that in
the case of the Seat class, these manipulations must be done
pertaining to a particular Table instance. Let us look in greater
detail at these four types of features.

A. Add

Assume we want our MinimalRestoApp to offer the Add
Table feature. To fulfill it, the addTable method must be added
to the Controller. The details of the implementation of such
method can be seen in Listing 2. Notice that the parameters
are only made up of non-lazy and non-autounique attributes.
Furthermore, no multi-valued associations are present in the
parameters. We first retrieve the MinimalRestoApp root object
from the MinimalRestoAppApplication1 class, as all other
objects are contained in it directly or indirectly (line 3).

1The implementation of the Controller assumes the existence of two helper
classes: (1) the MinimalRestoAppApplication class to start the application and
hold the root object, and (2) the MinimalRestoAppPersistence class to save
application data. These are almost fully generic classes that are more easily
generated than the Controller class and hence not the focus of this paper.



1public static String addTable(int number, String location) {
2
3MinimalRestoApp root = MinimalRestoAppApplication.

getMinimalRestoApp();
4
5if (!(number > 0)) {
6return "The table number must be greater than 0.";
7}
8
9Location parsedLocation;
10try {
11parsedLocation = Location.valueOf(location);
12}
13catch (Exception e) {
14return "The table location must be Indoors or Patio.";
15}
16
17try {
18new Table(number, parsedLocation, root);
19}
20catch (RuntimeException e) {
21return "The table number must be unique.";
22}
23
24try {
25MinimalRestoAppPersistence.save();
26}
27catch (RuntimeException e) {
28return e.getMessage();
29}
30
31return "";
32}

1public static String removeTable(int number) {
2
3try {
4Table table = Table.getWithNumber(number);
5table.delete();
6}
7catch (RuntimeException e) {
8return e.getMessage();
9}
10
11try {
12MinimalRestoAppPersistence.save();
13}
14catch (RuntimeException e) {
15return e.getMessage();
16}
17
18return "";
19}

1public static TOTable getTable(int number) {
2
3if (Table.hasWithNumber(number)) {
4return convertToTOTable(Table.getWithNumber(number));
5}
6
7return null;
8}

Listing 2: addTable (left), removeTable (top right), and displayTable (bottom right) Controller Methods

Then, we validate that all parameters fulfill their respective
constraints (lines 5-15). This may require input to be cast to
the correct type (e.g., in the case of enumerations) (line 11).
We then attempt to create the Table object by calling the Model
code generated by Umple (line 18). If the call succeeds, we
persist the change (line 25). At any point, if an error arises,
we return it in the form of a String.

B. Remove

Following the same logic, we likely wish to be able to
Remove a Table as well. The removeTable method, which is
illustrated in Listing 2, first starts by attempting to find the
desired Table instance (line 4), given the parameter and using
a method generated by Umple. If it is successful, it then deletes
said instance (line 5) before persisting the changes (line 12).
As with addTable, if at any point an error arises, it is returned
as a String.

C. Display

Manipulating Table instances is absolutely useless if we
cannot access them. Therefore, we will also need to Display
a Table. The getTable method can be examined in Listing 2.
Notice that unlike the previous two methods, we do not return
a String but rather a transfer object for Table, or TOTable
for short. We start by checking if a Table with the desired
reference number (i.e., the parameter) exists (line 3). If it does,
we retrieve this Table and convert it to a TOTable object (line
4). If it does not, we return null. Due to space constraints,
the body of the converter method and the specification of
the transfer object are not shown. A transfer object is an
immutable object that only contains the information needed by
the UI. It does not expose classes from the generated Model
package to the UI – as returning a Table object would – to
enforce a strict interpretation of the MVC pattern. In the course
project, Umple is used to specify each transfer object.

D. Update

Last but not least, being able to Update a Table is needed
to change some attribute values over time. The updateTable
method resembles a lot the addTable method. First, the pa-
rameter list is similar, except that an additional parameter is
needed for the identifying attribute of Table (i.e., number) –
one for the existing value and one for the new value, that
lazy attributes are included, and that immutable attributes are
not included. Second, they both return a String in the event
that an error is thrown, and third, both start by checking for
parameter constraints and typecasting to the correct type in the
case of enumerations. However, before performing the update,
we must retrieve the Table instance with the desired reference
number, much like in the removeTable method. Then, we can
update all necessary parameters by calling the corresponding
setter methods generated by Umple, and persist the changes
as in the addTable and removeTable methods.

This paper will show that by using the already-provided
features and constraints, as well as by creating an Umple
domain model, it will be possible to generate the contents
of the Controller, including the converter methods as well as
the Umple specification for the transfer objects.

IV. METAMODEL

The desired generation is achieved through use of Fea-
tureLanguage, a textual representation of a traditional domain
model supplemented with additional information. The details
of the FeatureLanguage metamodel can be viewed in Figure 2.
The root class, FeatureLanguage, and its associations indicate
that FeatureLanguage models are separated into five main
sections, namely Concepts, Constraints, Keys, Properties, and
Features. The following paragraphs will explain the different
metaclasses in greater detail.



Fig. 2: FeatureLanguage Metamodel

A. Concepts and Characteristics

Concepts and Characteristics exist to make a domain model
available in FeatureLanguage, and hence, they are considered
read-only. A Concept in FeatureLanguage is equivalent to a
class in a domain model (e.g., Table). Each Concept has an
identifying name and a set of Characteristics. Characteris-
tics are used to represent attributes (e.g., number, maxNum-
berSeats, location) and associations (e.g., seats, orders). This
design choice was made in order to simplify the Controller
generation. Since attributes as well as associations can be
parameters in a class’s Controller methods, modeling both as
Characteristics made for easier data accessing. When repre-
senting a simple attribute, a Characteristic has a type (e.g.,
EInt) and an identifying name (e.g., number). Note that type
is not a class in FeatureLanguage as for our purposes, only the
type name is necessary for generation, so forgoing giving it
its own class simplified the language model. If that attribute’s
type happens to be an enumeration, then the Characteristic
also contains a list of all possible literals in the enumeration
(e.g., Indoors and Patio). If the Characteristic represents an
association though, it has a multiplicity instead (e.g., 0..*).
All classes, attributes, enumerations, and relationships from
a domain model are represented in the Concepts section of
the FeatureLanguage model. It is assumed that the domain
model is valid (i.e., it is a well-formed class diagram). Hence,
the aforementioned simplifications are possible. Similarly,
multiplicity can be simplified into a String instead of modeling
separately lower bound and upper bound.

The remaining classes covering Constraints, Keys, Proper-
ties, and Features describe how the domain model is extended
with the information required to generate the Controller, and
eventually the Gherkin scenarios, step definitions, as well as
UI. Note that some Keys and Properties could be derived from
an Umple domain model and hence included in the definition

of Concepts and Characteristics. However, this is not done so
that the FeatureLanguage can also be used together with a
domain modeling tool that does not support them.

B. Constraints

A Constraint in a FeatureLanguage model specifies an
additional Condition that might apply to some Characteristics
of a Concept: for example, a numerical ID such as a Table
number that must be greater than 0. Each Constraint applies to
one of a Concept’s Characteristics, and contains one Condition
and one error message. The error message is that which the
Controller should return in the event the Constraint is not
respected. The Condition is made up of an operator and a
numerical value. Note that in the future, we envision to extend
this model to support arbitrary OCL constraints by leveraging
OCLinEcore’s capabilities instead of the basic comparisons
that are currently supported.

C. Keys

In a domain model, all classes but the root class need
an identifier to allow a user to tell apart their different
instances. This identifying value is represented as a Key in
FeatureLanguage, and all Keys are listed in the Keys section.
There are three types of Keys: unique, autounique, and index.

Unique and autounique Keys are for Concepts that are
identified by one of their Characteristics, which is either set
by the creator of the instance or automatically generated,
respectively. In the example in Figure 1, the number of a
Table is declared as unique and the number of an Order as
autounique.

The index KeyType is meant for Concepts that do not
have an identifying Characteristic of their own, but are rather
identified through their position in another Concept’s list (e.g.,
seats of a Table).



D. Properties

The Properties section contains two types of Properties,
namely Concept Properties and Characteristic Properties. A
Concept Property is used to declare which Concept is to be
treated as the root of this system (e.g., MinimalRestoApp).
This is the only Concept that will not have a Key, and it is
assumed to be a singleton. Characteristic Properties are used
to declare if one of a Concept’s Characteristics is lazy (e.g.,
maxNumberSeats) or immutable (e.g., a Table’s number).

E. Features

The last section contains a list of all Features that should
be executable in the system. There are four types of Features:
Add, Remove, Display, and Update. Add features are for cre-
ating instances. We may create instances of Concepts that are
not related to any other Concept (apart from the root Concept),
like creating a Table, but we may also create instances of
Concepts that are indeed related to other Concepts, like adding
a Seat to a Table. Remove features are essentially the opposite
of add features, deleting instances of Concepts that are or
are not related to other Concepts. Display features retrieve
information from the application, and can also be applied to
both Concepts and Characteristics. Update features can be used
to either modify an entire Concept or to change the value of
one of its Characteristics.

F. FL Model

FeatureLanguage (FL) models use the .fl extension and
follow minimal formatting. The FL model for the Minimal-
RestoApp motivating example can be seen in Listing 3.

Each Concept is defined using the concept keyword fol-
lowed by its name (e.g., concept Table on line 5). All Char-
acteristics are listed below, in an indented fashion (e.g., int
number on line 6 specifies an attribute). For Characteristics
that represent associations, the name is derived from the role
name in the domain model, and the multiplicity is represented
using the same convention as domain models (e.g., Seat seats
0..* on line 9). For Characteristics that represent enumeration
attributes, literals are listed within curly braces and space-
separated (e.g., Location location { Indoors Patio } on line
11).

Then, each section is delimited using its associated keyword.
In the Constraints section of this example, the Constraint
placed on Table’s number is shown, alongside the error mes-
sage that would be displayed in the event that Table’s number
would be less than 0 (line 25).

The Keys section specifies the three types of Keys used
in MinimalRestoApp. The specification of a Key requires a
Concept along with its Characteristic, next to either the unique,
autounique, or index keyword. For example, Table.number
unique on line 28 and Order.number autounique on line 30
indicate that a Table and an Order are identified by their
respective numbers, while Table.seats index on line 29 signals
that an individual Seat can be accessed through its place in
the list of the Table to which it belongs.

1concept MinimalRestoApp
2Table tables 0..*
3Order orders 0..*
4
5concept Table
6int number
7int maxNumberSeats
8MinimalRestoApp minimalRestoApp 1..1
9Seat seats 0..*
10Order orders 0..*
11Location location { Indoors Patio }
12
13concept Seat
14boolean isArmChair
15Table table 1..1
16
17concept Order
18Date date
19Time time
20int number
21MinimalRestoApp minimalRestoApp 1..1
22Table table 0..1
23
24constraints
25Table.number > 0 "The table number must be greater than 0"
26
27keys
28Table.number unique
29Table.seats index
30Order.number autounique
31
32properties
33MinimalRestoApp root
34Table.number immutable
35Table.maxNumberSeats lazy
36
37features
38Add Table
39Remove Table
40Display Table
41Update Table
42Update Table.location
43Add Table.seats
44Remove Table.seats
45Display Table.seats
46Update Table.seats
47Add Order
48Remove Order
49Display Order
50Update Order

Listing 3: FL Model for Minimal Restaurant Application

There are two types of Properties, those for Concepts and
those for Characteristics. The Concept Property lets us declare
exactly one Concept as the root, and is mandatory. In this ex-
ample, MinimalRestoApp is declared as the root of the system
in the Concept Property (line 33). A Characteristic Property
lets us declare a Characteristic as immutable or lazy (e.g., Ta-
ble.number immutable on line 34 and Table.maxNumberSeats
lazy on line 35).

Lastly, we can see the Features section, which lists all the
actions we should be able to perform in MinimalRestoApp.
Some features act upon a Concept (like Add Table on line
38). Others act upon a Characteristic, be it an association
Characteristic (like Add Table.seats on line 43) or an attribute
Characteristic (like Update Table.location on line 42).

V. TRANSFORMATION

To achieve the desired generation, our data will need to go
through multiple states and undergo several transformations.
An overview of this process can be seen in Figure 3. The
blue dashed arrows represent new transformations discussed
in this paper, while the black solid arrows represent third-
party transformations that already existed. Arrows without any
text represent handwritten work, like transcribing keys to the
FeatureLanguage model for example. The blue dashed boxes
represent the files created by the proposed system, namely the
partially generated FeatureLanguage model as well as the fully



Fig. 3: Transformation Pipeline

generated Umple transfer objects model and the Controller
class. All greyed out elements represent future work.

We start with an Umple domain model – the same tool many
model-based programming students are expected to use, which
is transformed into an Ecore model using Umple’s generation
feature. Through a Java extraction algorithm, we take the data
we need from the Ecore model and repackage it to fit the
FeatureLanguage text format for Concepts and Characteristics.
Then, the Constraints, Keys, Properties, and Features sections
are filled in manually by the instructor (some need to be copied
from Umple). Note that, instead of opting for a more compact
representation, we decided to clearly separate the different
sections to allow for iterative modification of the domain
model through the extraction algorithm without overwriting
the other sections. It is also possible to begin the generation
process from the Ecore model or the FeatureLanguage file
if desired. Once the FeatureLanguage model is complete, it
is transformed into an XMI file, using an EMF-based text-
to-XMI converter algorithm. Now that our data is in this
format, it is ready to go through its last transformation, which
will result in the generated Controller and the Umple transfer
objects model. Using Acceleo, we create templates to automate
the implementation of the Controller. Note that the choice of
transformation technology was arbitrary, and that any other
tool that allows model-to-model transformations could have
been used. We also use templates to generate the Umple
model for the transfer objects, which in turn will be used to
generate the classes for the transfer objects. Similar Acceleo
transformations will be used in the future to generate the View,
Persistence, and Testing layers of the application, as well as
the main application class.

A. Controller

First, we start with the file header, which loosely refers
to package declarations, imports, and class names. We get
the package name from the root Concept’s name. For the
imports, we first import the Application and Persistence classes

whose names we also derive from the root Concept’s name,
then we cycle through all the Concepts and import the entire
corresponding model for each Concept. It is important to
mention that this might result in creating more imports than
necessary, but it is an acceptable trade-off considering the
time and resource savings generation can provide. In this
header section, we also declare the Controller class name and
its constructor, deriving them again from the root Concept’s
name.

Next, we move on to generating all the methods in the
Controller. Each feature specified in the FeatureLanguage
model must each have at least one corresponding method in
the Controller. Moreover, converter methods from Concepts to
their transfer object counterparts must also be implemented.
Below, we will describe the transformations necessary to do
so for each of the four Feature types.

1) Add Methods: There are two types of Add methods:
Add Concept (like Add Table) and Add Concept.Characteristic
where Characteristic is an association (like Add Table.seats),
the latter being a variation on the first. We will therefore go
into detail using the Add Table example. Figure 4 provides a
schematic representation of the transformation from the Fea-
tureLanguage model to the outputted code, showing the output
in the third column and the corresponding source elements
from the FL model and the FL metamodel in the second and
first column, respectively. We first generate the name of the
method using the Concept name (line 2). We also list all the
relevant Characteristics as parameters, namely single-valued
Characteristics that are neither autounique, lazy, nor refer to
the root (lines 2-6). We can determine which Characteristics
correspond to those criteria by using Keys and Properties. In
this case, we only use number and location as parameters,
since maxNumberSeats is lazy and all other Characteristics
are multi-valued associations or refer to the root. The type
of each parameter matches that of the Characteristic, except
for Enumerations, where the Enumeration type (Location in
this case) is replaced by String. Then, we get the root,



Fig. 4: addTable Transformation

MinimalRestoApp, which is done using the ConceptProperty
which defines the root (line 7). If any of the Characteristics
listed in the parameters have any Constraints attached to them,
we verify that they are respected, and return an error if they
are not. This is done by finding the Constraints that include the
Concept we are trying to add (lines 8-10). In the case where
one of the parameters should be typecast to an enumeration
type, we implement a try/catch block to parse said parameter.
In this example, we must parse the String location into a Loca-
tion parsedLocation (lines 11-17). Now that all the preparation
work is done, we can implement the main try/catch block, the
one where we attempt to create the Table object. The list of
parameters used in this constructor call includes the root, as
well as the parameters in the AddTable method signature, with
the exception of enumeration Characteristics that underwent
parsing (lines 18-24). If something goes wrong, we return
an error String: either the exception message or a specific
message about the Concept Key if it is unique, as in this case
with Table number (line 26). We finish off with the persistence
block, which only requires using a ConceptProperty to find the
root Concept, in this case MinimalRestoApp (line 29).

As previously mentioned, Add Concept.Characteristic meth-
ods follow a very similar logic. Notable differences include
needing the Concept key in the parameters of the addChar-
acteristicToConcept method signature, and needing to retrieve
the Concept object, as well as adding the Characteristic object
to it. For example, for the method addSeatToTable, we would

need the Table number to be part of the parameters. Then, we
would need to retrieve that specific Table, create the new Seat,
then add the Seat to that Table.

2) Remove Methods: Remove methods are noticeably sim-
pler than Add methods. For Remove Concept methods, the
parameters only include the Concept Key. For example, the
method removeTable would only have the parameter int num-
ber. Remove Concept.Characteristic (where Characteristic is
an association) methods work very similarly but need both
the Concept and Characteristic Keys: the method removeSeat-
FromTable would only need the int number key for Table and
the int index key for Seat. Then, there are only two try/catch
blocks. In the first block, we attempt to find the Concept or
Characteristic instance we want to remove. The values for this
call are derived from the Concept or Characteristic and their
respective Keys. For example, we could find a Table with the
provided number, or find a Seat, with both the provided Table
number and index. If the instance is found, we delete it. All
thrown exceptions are returned in the form of a String. The
second block commits the change to the persistence layer, and
follows the exact same pattern as that of Add methods.

3) Display Methods: There are three types of Display
methods. First, we can Display Concept, like Display Ta-
ble. This is the most straightforward type, and the only
required parameter is the Concept’s Key, in this case the
Table’s number. The other two types of Display methods
concern Display Concept.Characteristic features. All Display



Concept.Characteristic features will have a displayCharacter-
isticFromConcept method, where Characteristic is an associ-
ation. For example, we could displaySeatFromTable, which
would take a Table number as parameter, as well as a Seat
index. However, for Characteristics that have an upper bound
multiplicity greater than 1, we may also have a display-
CharacteristicListFromConcept method. We know that a Table
can have multiple Seats, so we will generate a displaySeats-
FromTable method, with only the Table number as a parameter,
in order to display all Seats at once. In all cases, we first
start by trying to retrieve the Concept that corresponds to the
supplied Key, much like the two previous method types, so we
would look for the Table with the provided number. If none is
found, then we just return null. If we were looking to display
the entire Concept, then we return the converted form of the
instance, as the View should not have access to Model types.
For displayTable, we would therefore return TOTable. The data
necessary for this call is retrieved through the Concept and its
Key. If we were instead trying to display a Characteristic, we
would then check if the Characteristic exists in the Concept
instance. For example, we would look for a particular Seat in
the found Table, and convert it to TOSeat if found. If we were
trying to display a list of Characteristics, like all the Seats of
a Table, we would simply return a list of TOSeats.

4) Update Methods: There are also three types of Update
methods. First, we have methods for Update Concept features
where the Concept has a unique or autounique Key. For
example, Update Table would require as a parameter the Table
number to access the Table we are trying to update, as well as
all other single-valued associations, non-immutable, and non-
autounique Characteristics that do not refer to the root. These
parameters follow the same logic as those of the Add methods,
so enumeration types are converted to Strings. Second, we
have methods for Update Concept.Characteristic, where the
Characteristic is not an association. For example, we could
have a method to only update the location of a Table. In
this case, we only need the Table number and the new value
for the Characteristic as parameters. Note, however, that these
Update methods modifying only one Characteristic will also
be named updateConcept (e.g. updateTable in this case), and
will leverage overloading. Third, we have methods for Update
Concept.Characteristic, where the Characteristic is a Concept
with an index Key. This is the type of method we would need
to Update Table.seats. The required parameters would then
be the Table number of the Table the Seat belongs to, the
index Key of the Seat we are trying to update, as well as
all other single-valued association, non-immutable, and non-
autounique Seat Characteristics. The body of Update methods
resembles greatly that of Add methods, as we first must check
for Constraints, and then we typecast if needed. We then
attempt to retrieve the Concept instance, as in the Remove
methods, and then set the Characteristics corresponding to
each parameter. Finally, we persist the changes.

5) Converter Methods: In the Display methods, converting
from a Concept to its transfer object was touched upon. Indeed,
these conversion methods must be generated as well. For each

Concept, we return a new TOConcept using the TOConcept
constructor. Each parameter in that constructor corresponds
to a Characteristic. For non-association Characteristics, we
simply use a getter to retrieve them. For association Char-
acteristics, we also use a getter, but we convert the result
using its own converter method. For example, if we were to
convertToTOTable, we could use table.getNumber() to get its
number, and convertToTOSeat(table.getSeats) to get a list of
TOSeats.

B. Transfer Objects Model

While the Controller file constitutes the bulk of the gen-
eration, it is not very useful without the transfer objects for
all Concepts. Instead of generating the classes for the transfer
objects ourselves, we instead generate the Umple model which
can then be used to generate the classes. The namespace is
found using the root Concept, in this case MinimalRestoApp.
For each Concept, we create a corresponding class with all its
Characteristics. For non-association Characteristics, they are
rewritten verbatim, apart for some slight changes in types. For
example, the TOTable class would have Integer number as an
attribute, instead of int number, and String location instead of
Location location. For association Characteristics, they follow
the regular Umple syntax, but use directed associations only
(e.g., * –> TOSeat 0..* seats). The transfer objects currently
provide all the information in the domain model but are
expected to only provide the needed information in the future
when the Display method, which makes use of the transfer
objects, will be more customizable.

VI. RELATED WORKS

Currently, generating the Model layer of an MVC appli-
cation is quite standard, as many different frameworks offer
that possibility. Indeed, using Umple [14], Eclipse Modeling
Framework (EMF) [5], or PyEcore [11], it is possible for users
to completely generate an entire set of Model classes. Frame-
works like Spring [12] or Java Enterprise Beans [16] can also
be used to accelerate development time when implementing
MVC applications, as they can help reduce the amount of
boilerplate code one must write.

For our purposes, we would need a tool to generate an entire
Controller layer from an Umple domain model, which does not
exist as of now. However, that is not to say efforts to generate
controllers do not exist, like JHipster [17] which generates
full web applications but does require some customization of
the generated code for business logic. EMF on Rails [21] is
an example for the generation of web applications based on
Ecore models, resulting in skeleton code for Spring Roo [13]
from which a full web application can be generated. We will
discuss two other examples in greater detail below. Do note
that Controller generation using artificial intelligence is out of
scope for this paper though.

Entity Framework [18] is an object-relation mapping frame-
work used within the .NET framework. Amongst its many
features, Entity Framework, leveraging its scaffolding engine,
allows the generation of boilerplate CRUD controller code



by creating a data model (similar to a domain model) and
a database context [19]. While the Controller is functional,
it is quite rudimentary: additional business logic and error
management must be added in by hand [20].

NestJS is a framework to help create NodeJS server-side
applications. It aims to speed up the development process by
providing resources to automate repetitive programming [3].
It can create controllers, services, and transfer objects, but this
technique still requires business logic to be implemented by
hand. However, using the NestJS CRUD microframework [9],
it is instead possible to generate a fully working CRUD
controller and service for an entity. While the process is very
short and hence time saving, it is not a good alternative for
teaching purposes as we cannot see any logic in the code, so
it would be hard for students to learn from example.

To ensure a more thorough analysis of the current research
landscape, we examined the MoDRE Workshop papers from
the last 12 years as well as the available Educators’ Sym-
posium (EduSymp) papers of the MODELS conferences of
the last 19 years. In over 100 MoDRE papers and about
80 EduSymp papers, we found no attempt at Controller
generation. We did, however, find a handful of related gener-
ation efforts. Most notably, we found research on generating
functional tests from Business Process Model and Notation
(BPMN) diagrams [24]. From these BPMN diagrams, the
authors generated Gherkin scenarios for functional test cases,
which is akin to our future vision of generating unit test cases
through Gherkin scenarios from our FeatureLanguage.

VII. CONCLUSION

Learning by example can be a very effective strategy,
especially when it comes to model-driven engineering. While
courses focusing on this subject often require students to
implement an MVC application themselves, it can be very
difficult to provide full sample solutions due to time and
resource constraints.

Using FeatureLanguage, course instructors will be able to
generate the backend of an MVC application with minimal
time and resource investment. Using a domain model, as well
as the project constraints and features, it will be possible
to define a FeatureLanguage model in minutes. Afterwards,
the transformations described in this paper will take care of
outputting the Controller layer. It is evident that generated code
cannot be as elegant as handwritten code (e.g., unnecessary
import statements, multiple try/catch blocks instead of one).
However, this is a minor downside considering the huge gain in
productivity and efficiency that such an approach could have.
Moreover, the goal of a sample solution is to show how model-
based programming works, rather than to teach students how
to write concise code. Therefore, the benefits instructors and
students alike could experience from using FeatureLanguage
for sample solution generation remain unchanged.

In the future, we hope to expand FeatureLanguage by
supporting generalization. We also look forward to creating
a transformation to generate the View of an MVC application
as well as the testing suite composed of Gherkin scenarios and

their corresponding implementations. This will make it easier
for instructors to create more complete project descriptions
that include Gherkin scenarios. In order to further validate
our code generation, we plan on implementing by hand some
MVC applications (e.g., the course projects from the last
years) and comparing them with their generated counterparts.
This way, we will confirm that a set of sample solutions
suitable for University courses can be generated using Fea-
tureLanguage, saving time and resources for instructors, and
providing a more thorough learning experience for students.

While it is possible to expand the scope of FeatureLanguage
to non-educational projects in the future, significant changes
may have to be made due to assumptions about project com-
plexity and required support of non-functional requirements
such as security and performance.

REFERENCES

[1] Acceleo. Available at https://eclipse.dev/acceleo/ (2024/31/03).
[2] ATL. Available at https://eclipse.dev/atl/ (2024/04/04).
[3] CRUD generator (TypeScript only). Available at https://docs.nestjs.com/

recipes/crud-generator (2024/22/03).
[4] Cucumber. Available at https://cucumber.io/tools/cucumber-open/

(2024/21/03).
[5] Eclipse Modeling Framework (EMF). Available at https://eclipse.dev/

modeling/emf/ (2024/27/03).
[6] Gherkin Syntax. Available at https://cucumber.io/docs/gherkin/

(2024/23/03).
[7] JavaFX. Available at https://openjfx.io/ (2024/21/03).
[8] MDA - The Architecture of Choice for a Changing World. Available at

https://www.omg.org/mda/ (2024/03/04).
[9] NestJs CRUD. Available at https://github.com/nestjsx/crud (2024/22/03).

[10] Object Constraint Language. Available at https://www.omg.org/spec/
OCL/2.4/PDF (2024/04/04).

[11] PyEcore Documentation. Available at https://pyecore.readthedocs.io/en/
latest/ (2024/27/03).

[12] Spring Boot. Available at https://spring.io/projects/spring-boot
(2024/27/03).

[13] Spring Roo. Available at https://github.com/spring-attic/spring-roo
(2024/05/05).

[14] Umple. Available at https://cruise.umple.org/umple/ (2024/21/03).
[15] Umple Attribute Definition. Available at https://cruise.umple.org/umple/

AttributeDefinition.html (2024/22/03).
[16] What Is an Enterprise Bean? Available at https://docs.oracle.com/javaee/

6/tutorial/doc/gipmb.html (2024/27/03).
[17] What Is JHipster? Available at https://www.jhipster.tech/ (2024/03/04).
[18] R. Anderson et al. Entity Framework. Available at https://learn.

microsoft.com/en-us/aspnet/entity-framework (2024/21/03).
[19] T. Dykstra et al. Tutorial: Get started with EF Core in an ASP.NET

MVC web app. Available at https://learn.microsoft.com/en-us/aspnet/
core/data/ef-mvc/intro?view=aspnetcore-8.0 (2024/21/03).

[20] T. Dykstra et al. Tutorial: Implement CRUD Functionality - ASP.NET
MVC with EF Core. Available at https://learn.microsoft.com/en-us/
aspnet/core/data/ef-mvc/crud?view=aspnetcore-8.0 (2024/21/03).

[21] R. López-Landa., J. Noguez., E. Guerra., and J. de Lara. Emf on rails. In
Proceedings of the 7th International Conference on Software Paradigm
Trends - ICSOFT, pages 273–278. INSTICC, SciTePress, 2012.

[22] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim,
E. Syriani, and M. Wimmer. Model Transformation Intents and Their
Properties. Software & Systems Modeling, 15, 07 2014.

[23] S. Smith. Overview of ASP.NET Core MVC. Available at
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview?view=
aspnetcore-8.0&WT.mc id=dotnet-35129-website (2024/31/03).

[24] P. von Olberg and L. Strey. Approach to generating functional test
cases from bpmn process diagrams. In 2022 IEEE 30th International
Requirements Engineering Conference Workshops (REW), pages 185–
189, 2022.

[25] J. Whittle, J. Hutchinson, and M. Rouncefield. The State of Practice in
Model-Driven Engineering. IEEE Software, 31(3):79–85, 2014.

https://eclipse.dev/acceleo/
https://eclipse.dev/atl/
https://docs.nestjs.com/recipes/crud-generator
https://docs.nestjs.com/recipes/crud-generator
https://cucumber.io/tools/cucumber-open/
https://eclipse.dev/modeling/emf/
https://eclipse.dev/modeling/emf/
https://cucumber.io/docs/gherkin/
https://openjfx.io/
https://www.omg.org/mda/
https://github.com/nestjsx/crud
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://pyecore.readthedocs.io/en/latest/
https://pyecore.readthedocs.io/en/latest/
https://spring.io/projects/spring-boot
https://github.com/spring-attic/spring-roo
https://cruise.umple.org/umple/
https://cruise.umple.org/umple/AttributeDefinition.html
https://cruise.umple.org/umple/AttributeDefinition.html
https://docs.oracle.com/javaee/6/tutorial/doc/gipmb.html
https://docs.oracle.com/javaee/6/tutorial/doc/gipmb.html
https://www.jhipster.tech/
https://learn.microsoft.com/en-us/aspnet/entity-framework
https://learn.microsoft.com/en-us/aspnet/entity-framework
https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/crud?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/crud?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-8.0&WT.mc_id=dotnet-35129-website
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-8.0&WT.mc_id=dotnet-35129-website

	Introduction
	Background
	MVC Applications
	Domain Models and Umple
	Model Transformations

	Motivating Example
	Add
	Remove
	Display
	Update

	Metamodel
	Concepts and Characteristics
	Constraints
	Keys
	Properties
	Features
	FL Model

	Transformation
	Controller
	Add Methods
	Remove Methods
	Display Methods
	Update Methods
	Converter Methods

	Transfer Objects Model

	Related Works
	Conclusion
	References

