
FeatureLanguage:
Automatic Generation of
Application Backend for
Model-Based Programming

Course Projects
Erica De Petrillo, Gunter Mussbacher

McGill University

MoDRE’24, Reykjavik, Iceland June 25 2024

Model-Driven Engineering
Courses
• Semester-long project: MVC application
• Learning by example?

• Beneficial for students
• Time-consuming for teaching
staff

• Unless they use FeatureLanguage…

2

Typical MDE Course Project

• MVC app
• Model layer generated from class diagram using Umple
• Controller layer implemented by students using Java
• View layer implemented by students using JavaFx
• Test suite implemented by students using Cucumber

• Project size
• ~ 16 features
• ~ 25 constraints
• ~ 150 unit tests

• Derived from Gherkin scenarios

3

Umple

• Modeling tool and
programming language
family

• Adds concepts from
UML to OO languages

• Textual & graphical
• Umple features include:

• Generating Java code from class diagrams
• Generating Ecore diagrams from class diagrams

4

MVC App Generation Process

• MVC app
• Handwritten code

• Generated code
• Input

• Domain model
• Extra specification

• Output
• Sample solution

5

Transformation Pipeline

6

- Thick Black: Already Existed
- Dashed Blue: Current Implementation
- Thin Grey: Future Work

Project Info -> FeatureLaguage

7
- Thick Black: Already Existed
- Dashed Blue: Current Implementation

FeatureLanguage -> XMI

8
- Thick Black: Already Existed
- Dashed Blue: Current Implementation

XMI -> MVC App

9
- Thick Black: Already Existed
- Dashed Blue: Current Implementation - Thin Grey: Future Work

FeatureLanguage

• DSL
• Created using Xtext
• Sections

• Concepts
• Constraints
• Keys
• Properties
• Features

10

Concepts

• Generated from domain
model

• Textual representation of
domain model

• Umple class = FL Concept
• Umple attribute = FL
Characteristic

• Umple association = FL
Characteristic

• Umple inheritance

Built-in Types:

- int
- byte
- short
- long

- float
- double
- boolean
- char

- String
- Date
- Time

11

Constraints

• Filled by hand from the project instructions
• Dot notation: Concept.characteristic
• Operators:

• Less than <
• Less than or equal <=
• Equal =
• Greater than or equal >=
• Greater than >

• Value
• Error Message
• Limitations

12

Keys

• Filled in by hand using
• Domain model information
• Project instructions

• All Concepts except root need a Key
• Unique keys
• Autounique keys
• Index keys

13

Properties

• Filled in by hand using:
• Domain model information

• ConceptProperty
• Mandatory
• Declares root

• CharacteristicProperty
• Optional
• Defines Characteristic as lazy or immutable

14

Features

• Filled in by hand using:
• Project instructions

• Four types:
• Add

• Can act on Concepts
• Can act on Characteristics representing associations

• Remove
• Can act on Concepts
• Can act on Characteristics representing associations

• Display
• Can act on Concepts
• Can act on Characteristics representing associations

• Update
• Can act on Concepts
• Can act on Characteristics representing associations
• Can act on Characteristics representing attributes

15

Acceleo transformation

16

Acceleo Transformation

• Uses
• OCL queries
• Templates

• Outputs
• Controller class (.java)
• Transfer Object generation
 file (.ump)

17

Controller Class – Headers

18

Controller Class – Feature
Methods
• For each Feature => 1 Controller method

• Different templates for
• Different Feature types

• Acting on Concepts of Characteristics

• Special case: Display Concept.Characteristic
• Where Characteristic’s upper bound multiplicity > 1

• Then 2 methods:
• getCharacteristicFromConcept => gets 1 Characteristic

• getCharacteristicsFromConcept => gets Characteristic list

19

Controller Class – Add Table
Example
Uses:
- Feature
- Concept
- Characteristic
- ConceptProperty
- Key
- CharacteristicProperty

Uses:
- ConceptProperty

Uses:
- Constraint
- Concept
- Characteristic

Uses:
- Characteristic
- CharacteristicProperty
- Concept

20

Controller Class – Conversion
Methods
• Convert Model Objects into Transfer Objects
(TOs)

• 2 types of Conversion methods:
• Convert 1 Model Object to 1 Transfer Object
• Convert Model Object list to Transfer Object list

• Only when Concept’s upper bound multiplicity > 1

21

Transfer Object Umple File

• Can generate the TO classes from this file
using Umple

• FL Concept => TO Class
• Except for root

• Immutable
• All associations =>
 directed associations

22

Transformation Pipeline

23

- Thick Black: Already Existed
- Dashed Blue: Current Implementation
- Thin Grey: Future Work

Future Work

• Replacing basic constraints by OCL constraints
• Generating Gherkin scenarios

24

What else
would you like

to have
generated for a
course project?

	FeatureLanguage: �Automatic Generation of�Application Backend for Model-Based Programming Course Projects�
	Model-Driven Engineering Courses
	Typical MDE Course Project
	Umple
	MVC App Generation Process
	Transformation Pipeline
	Project Info -> FeatureLaguage
	FeatureLanguage -> XMI
	XMI -> MVC App
	FeatureLanguage
	Concepts
	Constraints
	Keys
	Properties
	Features
	Slide Number 16
	Acceleo Transformation
	Controller Class – Headers
	Controller Class – Feature Methods
	Controller Class – Add Table Example
	Controller Class – Conversion Methods
	Transfer Object Umple File
	Transformation Pipeline
	Future Work
	Slide Number 25

