
A Goal-Oriented Approach for Modeling Decisions
in ML Processes

1st Rohith Sothilingam
Faculty of Information
University of Toronto

Toronto, Canada
rohith.sothilingam@mail.utoronto.ca

2nd Eric Yu
Faculty of Information
University of Toronto

Toronto, Canada
eric.yu@utoronto.ca

Abstract—The ability to judiciously make systematic decisions
throughout the entire Machine Learning (ML) lifecycle, encom-
passing model training, development, and deployment, is crucial
for ensuring the robustness and adaptability of models in the face
of evolving requirements. This paper proposes a goal-oriented
(GO) approach which aims to improve the ML process so as to
achieve overall ML goals. Our approach aims to understand the
alternative types of decisions or choices that are made, and where
in the ML process, based on what criteria. The main contribution
of this research paper is to propose a GO approach, to support the
strategic selection of technical alternatives, throughout the phases
of model training, development, and deployment, to design ML
solutions.

Index Terms—Responsible AI, Machine Learning, Goal Mod-
eling, Repetition Loops, Sensors, Actuators

I. INTRODUCTION

Many decisions are required throughout the ML develop-
ment process. Together, they contribute towards achieving the
overall goals, including technical goals such as accuracy, as
well as social responsibility goals such as fairness, and trust-
worthiness. The ML process is iterative, with some iterative
cycles nested inside others. As decision criteria may need
to change to reflect changing conditions, it is important to
position decisions appropriately within the ML process in
order to achieve overall goals.

Goal-oriented (GO) conceptual modeling has long been
established in the Requirements Engineering literature as an
approach to deal with such conflicts and tradeoffs in other
areas of software engineering (e.g. [3] [13]). Several GO
approaches exist which demonstrate the usefulness of GO
reasoning to design, elicit, and analyze Business requirements
(e.g. GRL [1] [2]). GO reasoning has also been shown
to be useful for systematically designing and analyzing the
interrelationships between business and ML objectives. For
example, GR4ML [5] analyzes the strategic business aspects
of data analytics solutions.

GO conceptual modeling can provide a structured reasoning
approach for systematic decision-making at each iteration of
the ML process. The ML process relies on iterative experi-
mentation, with multiple layers of nested iterative loops. An
important consideration is to position the right decisions in
the right places in the ML process. Our approach supports
the design of the ML process, to guide the right decisions to

be made. These decisions can be achieved by several alter-
natives, which are represented as tasks, based on i* [13]. To
choose among the alternatives, decision criteria are represented
using softgoals. An example of a decision in ML may be
”Hyperparameters be chosen”. Alternatives available may be
various types of hyperparameters to choose from, depending
on the ML model type chosen such as K-Nearest Neighbours
(KNN), Support Vector Machines (SVM), or Decision Trees.
The decision points must be at the appropriate places.

Much like a process designer aiming to design the SDLC
process in software development, we aim to determine where
and when in the ML process that decisions must be made. For
example, choosing the ML model type at the wrong place in
the ML process can cause issues related to cost inefficiency
or inaccuracy of prediction results. To make the most appro-
priate decision, it is crucial to consider the decision criteria
associated with each alternative because each alternative will
yield different, often competing benefits and pitfalls.

During the ML lifecycle, cycles occur in nested patterns,
with various nested “loops” of iteration. In each iteration
round, decision criteria may need to change (or remain the
same). Examples include reconsidering how we evaluate our
ML models, the techniques we use, and the metrics we care
about, at each repetition cycle. By leveraging GO reason-
ing, the proposed approach intends to facilitate systematic
reasoning about what decisions are made at every repetition
are purposeful and aligned with the overarching goals of ML
model development.

We propose the following novel GO modeling concepts
to support systematic decision-making for designing ML so-
lutions: Sensors, Actuators, and Repetition Loops. Sensors
provide information needed to support making informed de-
cisions, such as choosing the correct type of ML model.
Sensors complement decision criteria (softgoals). Actuators
represent adjustable knobs, to convey settings that can be
adjusted, based on what the Sensors tell us. Repetition Loops
represent iterative cycles, which are often nested within larger
(outer) loops, such as ongoing cycles of development in the
ML lifecycle. Together, Repetition Loops involve a constant
process of tweaking and improving upon decisions, with the
support of Sensors and Actuators.

Sensors and Actuators are not explicitly expressed in any



known goal-oriented or process modeling language. The pro-
posed modeling constructs build upon existing goal-oriented
modeling approaches such as i* [13] and the NFR framework
[3].

II. MOTIVATING EXAMPLE

Feature engineering is the process of selecting and trans-
forming raw data into relevant features that improve machine
learning model performance. Feature engineering is essential
to extract meaningful insights from data and build effective
ML models. During this stage, how can we make adjustments
while making decisions on chosen features to achieve the de-
sired feature importance score? What further, non-intentional
factors, can we consider as a decision input to aid us in our
design? BIM Indicators can support the ability to measure
against a given threshold, to support analysis of business
objectives using current business data as business metrics [4].
However, it does not support the collection of data, as an
input for tuning particular settings or parameters to conduct
adjustments which would lead to goal satisfaction.

Due to the limitation of existing goal modeling techniques,
we cannot answer these questions as existing goal modeling
notations do not allow such information to be expressed, such
as the decisions involved in the feature engineering process. To
inform and guide these decisions as well as answer these ques-
tions, we propose modeling constructs that support collecting
information from the real (or causal) world to help us improve
our design of ML processes concerning appropriate decisions
at each iterative loop. By using the modeling constructs we
propose, we can now uncover missing elements, with respect
to how we consider reasoning for goals.

III. INTRODUCING MODELING NOTATION WITH A TOY
EXAMPLE

Consider the task of baking cookies. While baking the
cookies, some important things to consider are the following:
temperature and taste. We will walk through the cookie baking
process as an example setting for applying the proposed
modeling constructs. Figure 3 conveys a goal model consisting
of the proposed modeling notation.

A. Sensors

At a high level, sensors act as the ”eyes” and ”ears”, as
sensors represent the collection of data from the environment
(or causal world). Sensors are conveyed using Indicators, as
borrowed and adapted from BIM [4]. Sensors intend to gather
data as inputs to the intentional actor from the causal world,
of which these inputs will then be used as decisioncriteria for
being used at the operationalization stage of the goal model.
Quantities (i.e. thresholds) are converted into signals that can
be interpreted by the intentional actor and used for reasoning
based on related intentions and priorities, which are conveyed
as softgoals. Once the threshold is satisfied, an adjustment is
needed (represented as an Actuator).

In our baking example, a thermometer is typically used
for baking to measure the actual temperature inside the oven

Fig. 1. Adjusting the temperature to achieve the right heat using an Actuator

Fig. 2. Actuator: adjust flavour of the cookies

accurately. Oven dials may not always reflect the true temper-
ature, Heat and taste are the Sensors in this example to signify
whether the cookie is baking at the correct temperature.

B. Actuators

Actuators complement Sensors, to facilitate the ability to
adapt to environmental settings. Actuators refer to the ad-
justable settings that influence a specific task, such as influ-
encing how well that task works. These settings are set before
the task is set forth. The decision criteria for adjusting these
settings are done based on the input from Sensory information
from the causal world (i.e. a Sensor).

The Actuator can be attached to a Task to signify parameters
that can be tuned to successfully achieve that task, based on the
input gathered from Sensors. Often, a Task can be associated
with multiple Actuators, signifying how a task can be tuning
multiple control knobs.

Using the same baking example above, temperature is
conceptualized as an Actuator (figure 1), signifying that the
temperature can be adjusted until the cookie is baking at the
correct temperature. For adjusting the taste, the following are
conceptualized as Actuators: sugar, salt, butter, and eggs, to
adjust the taste of the cookie (figure 2).

C. Repetition Loops

Repetition Loops have long been used as software program-
ming constructs. Repetition Loops continue until a condition
(or “stop criteria”) is specified. We use the “repeat loop” sign
borrowed from BPMN to represent a Repetition Loop, which
can be attached to a Goal, signifying that the task is repeated
until a specified condition has been met.

Nested loops are represented through task refinement. The
Repetition Loops associated with the refined Tasks are referred
to as the Inner Loop, whereas the Repetition Loop associated
with the parent Task is referred to as the Outer Loop.



Fig. 3. Proposed modeling notation conveying sensors, actuators, and repe-
tition loops

Fig. 4. Repetition Loop with baking

Continuing with the baking example, the outer loop repre-
sents the different batches of cookies. Within each batch, there
are a series of inner loops, representing the different stages and
steps for baking the cookies. Within each of these inner loops,
there are further inner loops describing the tasks for the set
of 5 main inner loops. This set of enveloped outer and inner
loops are referred to as nested loops.

Each time you proceed through these nested loops, a sys-
tematic set of cookies is being created with set flavour, con-
sistency, and texture. The result is a structured and organized
way of managing the complexity of cookie baking.

In figure 4, the “Wet ingredients be combined” Goal repre-
sents an inner loop that is repeated until the stopping criteria of
“wet ingredients are well-incorporated” is satisfied. The Sensor
”dough feeling” provides an input as the Actuators ” of eggs”
and ”amount of vanilla” are tuned until the stopping criteria
of the repetition loop is satisfied.

In figure 5, we represent a metamodel that captures the
semantics and formal relationships of the primary modeling
constructs proposed: sensors, actuators, and repetition loops.

Fig. 5. Metamodel for Sensors, Actuators, and Repetition Loops

IV. APPLYING THE MODELING COMPONENTS TO ML

Hyperparameters will need to be tuned at multiple points
of time in the ML lifecycle, for various reasons. The reason-
ing is strategic as tuning specific hyperparameters will yield
results that benefit different, often conflicting softgoals. We
will explore the ability of our proposed modeling constructs
to express and analyze the criteria for why a change (e.g.
hyperparameter tuning) needs to occur, and what information
substantiates this decision. We will explore how well our pro-
posed modeling constructs can be used to express and reason
the conflicts between technical ML and strategic decisions.

A. Sensors and Actuators in ML

Consider the following example in figure 6. The Sensors
of “Feature Importance” and “Feature distribution statistics”
are attached to the Goal of “Feature Evaluation” and are
used to gather input on decision criteria for which task
alternatives to choose (i.e. the feature evaluation technique
alternatives. Feature distribution statistics provide summary
statistics for each feature, while Feature Importance scores
can be used as input for ranking features and initializing
permutation importance calculations. The modeler can design
actions to take based on available alternatives (tasks) to make
informed decisions (goals) in the goal model below (figure
6). Softgoal decision criteria associated with each technique
alternative, are represented as tasks (“permutation importance”
and “recursive feature elimination”). The Sensors provide non-
intentional inputs to tune the tasks of Permutation Importance
and Recursive Feature Elimination, based on their associated
Actuators. Tuning Step Size controls how many features are
eliminated at each iteration. Tuning the number of permu-
tations controls the accuracy and stability of the importance
scores. More permutations lead to more robust results but
increase computation time.

The alternatives which are chosen here are then used at the
following operationalization stage, where the chosen alterna-
tives are used. This is denoted by using Indicators, as borrowed
from BIM [4].



Fig. 6. Using Sensors as inputs to support the analysis of alternatives during
decisions in the ML process

As another example, in the goal model fragment below
(figure 7, the following Sensors are attached to the goal of
“Prediction of problem domain”: ”kernel parameter”, ” of
features to consider”, ”distance metric”, and ”learning rate”.
Each of these Sensors is used as input to tune associated
hyperparameters, which are represented as Actuators. The
kernel parameter controls the shape of the decision boundary
in SVM, and the regularization parameter is used to tune
the performance of SVM models. The ”Distance metric”
Actuator can be tuned in KNN models based on the number of
neighbours (K). The ”Number of trees” (or iterations) Actuator
can be tuned, based on training time. If training time is a
concern, one may want to reduce the number of trees to
speed up the process. Regularization Strength for Logistic
Regression and Alpha Value for Naive Bayes models can be
tuned based on the data noise Sensor. If the data is noisy or
has outliers, increasing regularization can help reduce their
impact. Based on these inputs, the ML model alternatives can
be reasoned between, to choose the appropriate alternative
based on these Sensors.

B. Repetition Loops in ML lifecycle

Consider the following example below in figure 8, which
involves an outer loop (goal of Deployment of ML model)
and an inner loop (goal of Predictive model be trained). The
repetition is complete once all model evaluation criteria have
been met. Repetition loops illustrate how algorithms iterate
through repetitive decision-making loops multiple times to
learn patterns and achieve both ML performance and strategic
goals. A set of Indicators is attached to the goal of ”Prediction
performance be monitored” with thresholds to monitor the
success of the goal.

Building on the example earlier, in figure 9, we demonstrate
an important use of the repetition loop modeling construct
for conveying the tuning hyperparameters as part of a larger
(outer) goal of training a predictive ML model. Alternative
configurations are tested iteratively to find the optimal settings.

Fig. 7. Using Sensors as an input to deal with tradeoffs in ML

Fig. 8. Iterative Repetition Loops in ML

Fig. 9. Repetition loops and hyperparameter tuning for achieving successful
ML model convergence



Many nested loops occur in the ML lifecycle. Using task
refinement, we can see how complex goal realization of loop
criteria is achieved involving multiple, nested, interrelated
sub-steps. Nested Loops demonstrate how different stages (at
different times) of the ML lifecycle continuously improve or
are fine-tuned (outer and inner loop) to better meet the defined
goals (i.e. the stop criteria of each Repetition Loop element).

The Repetition loop “repeat until model evaluation criteria
are met” is attached to the Goal “Predictive model be trained”.
This indicates the Goal in question is repeated until the “stop
criteria” of “evaluation criteria are met” is completed. Each
time a hyperparameter is tuned (will happen 3 times to cover
each actuator), the ”train model” task will be conducted as
well as part of the AND relationships with the Goal ”Predictive
model be trained” of which the Repetition Loop is associated
with.

V. RELATED WORK

Sensors and Actuators are not explicitly supported in con-
ceptual modeling language notations. In broader conceptual
modeling notations like UML or BPMN, the explicit repre-
sentation of sensors and actuators is typically abstracted away
in favour of focusing on high-level processes, interactions, and
structures.

Repetition loops are supported in process modeling lan-
guages such as BPMN and UML. BPMN supports the ability
to attach the condition on which a loop task executes for the
first time or apply the condition on repeated executions as an
annotation to the task. A task can also be repeated iteratively
for multiple instances until the stop criteria are met. BPMN is
limited in that beliefs and assumptions cannot be captured as
well as refined tasks that are interrelated with tasks associated
with the repetition loop. Though nested sub-processes are
expressible consisting of tasks with their repetition loops,
nested refinement of tasks, concerning sub-processes is not
supported in BPMN.

Process modeling languages do not support the criteria in
which decisions are made, and at different temporal loops. For
example, how does one decide whether something should be
decided within an inner loop rather than the outer loop? Are
there certain decisions that need to be made in the inner loop
as opposed to the outer loop?

Goal-oriented modeling languages have limited support for
sensors, actuators, and nested repetition loops. Awareness
requirements and adaptive systems in goal modeling touch
on limited aspects of sensing. Morandini et al. [6] look at
a goal-oriented approach for designing self-adaptive systems,
drawing particular attention to the engineering of self-adaptive
software.

Awareness Requirements [12] are requirements that refer to
other requirements or domain assumptions and their success
or failure at runtime. This type of reasoning encourages
adaptivity to support the monitoring, diagnosis, planning, and
execution of requirements. Our proposed Sensor modeling
construct allows intentional Actors to decide what to do based
on the value of the sensed variable, allowing the Actor to

interact with the non-intentional world, in addition to the
intentional relationships it has with other actors.

VI. CONCLUSION

In this work, we presented 3 novel modeling constructs for
GO reasoning to support the design of ML processes: sensors,
actuators, and repetition loops. This work is part of larger PhD
research [7] [8] [9] [10], which aims to understand how these
three parts can be used together to design ML models that are
technically sound, responsible, and adaptable. In future work,
we aim to extend the proposed GO approach to incorporate GO
reasoning about the placement of decision points, to determine
whether the decision points are in the right place as applied to
ML processes. We will apply, validate, and refine the proposed
GO approach to existing case studies identified in existing
literature, such as [11]. We aim to then utilize the modeling
constructs in empirical case studies.

REFERENCES

[1] Amyot, D. (2003). Introduction to the user requirements notation:
learning by example. Computer Networks, 42(3), 285-301.

[2] J. Castro, M. Kolp and J. Mylopoulos, ”A requirements-driven develop-
ment methodology”, Advanced Information Systems Engineering: 13th
International Conference CAiSE 2001 Interlaken, pp. 108-123, 2001.

[3] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J. (2012). Non-functional
requirements in software engineering (Vol. 5). Springer Science Busi-
ness Media.

[4] Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A.,
Mylopoulos, J. (2014). Strategic business modeling: representation and
reasoning. Software Systems Modeling, 13, 1015-1041.

[5] S. Nalchigar and E. Yu, ”Designing business analytics solutions”,
Business Information Systems Engineering, vol. 62, no. 1, pp. 61-75,
2020.

[6] Morandini, M., Penserini, L., Perini, A. (2008). Towards goal-oriented
development of self-adaptive systems. In Proceedings of the 2008
international workshop on Software engineering for adaptive and self-
managing systems (pp. 9-16).

[7] Sothilingam, R., Eric, S. K. (2020). Modeling Agents, Roles, and
Positions in Machine Learning Project Organizations. In iStar (pp. 61-
66).

[8] Sothilingam, R., Pant, V., Eric, S. K. (2022). Using i* to Analyze
Collaboration Challenges in MLOps Project Teams. In iStar (pp. 1-6).

[9] Sothilingam, R. (2023). A Requirements-Driven Conceptual Modeling
Framework for Responsible AI. In 2023 IEEE 31st International Re-
quirements Engineering Conference (RE) (pp. 391-395). IEEE.

[10] Sothilingam, R., Yu, E. (2023). Toward a Goal-Oriented Argumentation
Approach for Fair ML Measures Using i*.

[11] Shankar, S., Garcia, R., Hellerstein, J. M., Parameswaran, A. G.
(2023). “We have no idea how models will behave in production until
production”: How engineers operationalize machine learning.

[12] Silva Souza, V. E., Lapouchnian, A., Robinson, W. N., Mylopoulos, J.
(2011). Awareness requirements for adaptive systems. In Proceedings of
the 6th international symposium on Software engineering for adaptive
and self-managing systems (pp. 60-69).

[13] E. Yu, P. Giorgini, N. Maiden and J. Mylopoulos, Social modeling for
requirements engineering, MIT press, 2011.


