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Abstract—Emerging LLM-based code generation tools enable
programmers to specify desired functionality and automatically
generate code. However, these tools fall short in comparison to
human ability when it comes to creating complete system models
from requirements. This is because humans typically formulate a
software design before implementing a system. In this paper, we
propose to use the behavioral programming (BP) model-based
paradigm as a general design approach that allows for the direct
translation of requirements of any reactive systems into code.
We demonstrate that each requirement can be automatically
transformed into a dedicated code module without the need for
a global view of the system. The key lies in BP’s capability to
enable modules to implement both scenarios and anti-scenarios
separately. This means that each module can independently
define behaviors that may happen, must happen, and must not
happen. Subsequently, an application-agnostic execution engine
interprets and interweaves these modules at runtime to generate
cohesive system behavior consistent with system requirements.
The fact that each requirement is translated into a small module
also facilitates the verification of its implementation, thereby
helping to reduce errors in LLM code generation. We present
an initial evaluation of our approach and demonstrate how
the characteristics of BP aid in generating aligned and correct
implementations.

Index Terms—behavioral programming, large language mod-
els, requirement engineering

I. INTRODUCTION

Large Language Models (LLMs), such as OpenAI’s GPT [1]
or Google’s BERT [2], have sparked a transformative revolu-
tion in automatic text generation, and have demonstrated re-
markable capabilities in understanding and producing human-
like text across various domains, including natural language
processing [3], content generation [4], and software engi-
neering [5]. This breakthrough technology has enabled the
automation of routine programming tasks and introduced new
possibilities for enhancing developer productivity and software
quality.

While LLMs are proving useful in bridging requirements
and their implementation, there is still a gap between the
current state-of-the-art and the vision of code-less program-
ming [6]. In this paper, we identify two main factors that can
be improved with a new approach that we propose:

1) Current practices typically involve programmers creating
software designs and then tasking LLMs with implement-
ing parts of the design. We argue that it may be feasible
to utilize a unified design approach so that LLMs can
directly handle multifaceted requirements.

2) LLMs often introduce errors that are challenging for
programmers and other stakeholders to identify. We state
that the implementation can be formally verified using
techniques such as model-checking by isolating and keep-
ing the code that implements each requirement separate
and concise.

To illustrate the challenge of using LLMs for architecting
systems directly from requirements, we turn to a well-known
use case: an event-driven level-crossing system [7]–[9]. This
example describes a system functioning as a controller for a
gate at a railway crossing—an intersection between a railway
line and a road at ground level. The railway line has a sensor
that signals the controller whenever the train approaches,
enters, and leaves the crossing zone. Based on these signals,
the system manages the raising and lowering of barriers to
ensure the safety of passing trains.

The following requirements are taken from Elyasaf et al. [9]:

1) When a train passes, the sensor system activates the exact
event order: approaching, entering, and leaving.

2) The barriers are lowered when a train approaches and
then raised.

3) A train may not enter while barriers are raised.
4) The barriers may not be raised while a train passes, i.e.,

it approached but did not leave.

To emphasize how LLM implements a system out of its
requirements, we prompted OpenAI’s latest LLM model (gpt-
4-turbo-preview) [10] model and asked it to implement the
level-crossing system that adheres to the requirements above.
The task involved requesting the model to produce a Python
function to simulate the specified system. The function was
expected to generate a potentially varying trace of system
events among all feasible traces. Apart from these instruc-
tions, the model could implement the system as it saw fit,
i.e., add classes and methods if needed. The entire prompt
we used is provided in the appendix [11], and the code
used to run it is available at https://github.com/bThink-BGU/
Papers-2024-MoDRE-BP-LLM. The generated implementa-
tion is given in Listing 1.

We found that the model’s implementation violates all
specified requirements. Further, a review of the code reveals
that it constructs a sequence of events that is composed of
three parts: a random sequence (pre_evts), a fixed sequence
(mandatory_sequence), and another random sequence
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def railway_crossing_events():
evts = ["Approaching", "Entering", "Leaving",

"Lower", "Raise"]
sequence = []
mandatory_sequence = ["Approaching", "Lower", "Entering",

"Leaving", "Raise"]
sequence.extend(mandatory_sequence)
pre_evts = random.sample(evts,

k=random.randint(0, len(evts)))
sequence = pre_evts + sequence
post_evts = random.sample(evts,

k=random.randint(0, len(evts)))
sequence += post_evts
if sequence[-1] != "Raise":
sequence.append("Raise")

return sequence

Listing 1: The level-crossing example, implemented by GPT
4 as a general Python implementation.

(post_evts). Certainly, it does not enforce the desired
behavior in any meaningful way, and it is unclear how the
different parts of the code relate to the requirements. This lack
of alignment makes it difficult to fix the code to accurately
reflect the intended behavior and hinders maintenance. Addi-
tionally, we note that the inclusion of the fixed sequence by
the system results in over-specification, as this sequence is not
necessarily required (for instance, if a second train approaches
before the barriers are raised). We prompted the model several
times, offering to use classes and methods. Despite multiple
attempts, our efforts were unsuccessful.

In light of this small experiment, we identified the following
research questions:
R1. Can LLMs be applied to translate multifaceted require-

ments into implementations without requiring a software
design phase?

R2. Can developers use verification techniques effectively to
identify and handle the errors produced by LLMs?

LLM coding benchmarks, such as HumanEval [12],
MultiPL-E [13], and MBPP [14], primarily focus on gener-
ating code snippets dedicated to a specific task, e.g., software
interview questions, or mathematical computations. We could
not find LLM benchmarks for generating complete systems
from requirements with cross-cutting aspects. Thus, we believe
that raising these questions and striving towards higher-level
benchmarks is important for the requirements-engineering
community. Nevertheless, the focus of this paper is to em-
phasize the importance of aligning requirements to code for
this task. Specifically, we illustrate how a modeling approach
where each requirement is implemented in a separate dedicated
code segment can help address the above two questions.

Encouraged by a recent position paper by Harel et al. [15],
we suggest the behavioral programming (BP) model-based
paradigm [16]. This approach allows the decomposition of the
model generation process into smaller, more manageable parts.
This modular approach not only harmonizes well with the ca-
pabilities of LLMs but also offers a structured methodology for
composing and orchestrating these code fragments into larger,
coherent software systems. Additionally, one of BP’s primary
design goals is the direct alignment with software require-

ments, as articulated in natural language by humans [17], [18].
This alignment can potentially reduce complexity and simplify
the translation of requirements into an indirect implementation,
offering an additional advantage:
R3. Can a programming model where each requirement is

implemented in a separate module help LLMs translate
multifaceted requirements into code?

In the following sections, we will introduce BP and illustrate
how its properties offer an advantage in the context of auto-
matic model generation. It is worth noting that while this paper
focuses on BP, we do not claim that it is the only formalism
that has these properties; rather, we claim that these properties
are important in addressing this challenge. Other approaches
can be used to address these challenges, provided they have
similar attributes.

II. BEHAVIORAL PROGRAMMING AND BPPY

Behavioral Programming (BP) [16] is a model-based
paradigm that enables users to specify the behavior of re-
active systems directly, in alignment with their perception
of the system requirements. In BP, users write scenarios,
known as b-threads, representing behaviors the system should
include or avoid. Each scenario is standalone, focusing on
a specific aspect of the system behavior, typically a single
requirement. At runtime, an application-agnostic execution
engine interprets and seamlessly interweaves these scenarios
to produce cohesive system behavior consistent with the
specified requirements. This execution mechanism is based on
a synchronization protocol introduced by Harel et al. [17].
The protocol involves each b-thread submitting a statement
before selecting an event produced by the b-program. When a
b-thread is ready to submit a statement, it synchronizes with
its peers and specifies the events it requests, waits for (without
requesting), or blocks. After the statement submission, the
b-thread is paused. Once all b-threads have submitted their
statements, the b-program reaches a synchronization point,
where an event arbiter selects a single event that was requested
and not blocked, and resumes all b-threads that requested or
waited for that event. The remaining b-threads stay paused, and
their statements are considered in the subsequent synchroniza-
tion point. This process is repeated throughout the program’s
execution.

To provide an illustration of these concepts, we begin
with a short example of a b-program (a set of b-threads)
implemented in BPpy [19], an implementation of BP in
Python. This example is adapted from one of the sample b-
programs presented by Harel et al. [16], specifying a system
responsible for controlling the mixing of hot and cold water
from two respective taps. Listing 2 contains two b-threads,
named add_hot and add_cold, each requesting the event
of pouring a small amount of hot and cold water, respectively,
three times. B-threads in BPpy are implemented as Python
generators—functions capable of pausing themselves and pass-
ing data back to their caller at any point using the yield

idiom. They can then be resumed when re-invoked using
the send method. Statements submitted by the b-threads are



structured as instances of the sync class, containing events
or event sets labeled by the request, block, or waitFor
arguments. BPpy’s execution mechanism initiates by inde-

pendently invoking each b-thread generator and awaiting its
statement yield. Once all the statements are collected, an event
is selected, and the program resumes its execution based on
the protocol mentioned above.

@bp.thread
def add_hot():

for i in range(3):
yield sync(request=BEvent("HOT"))

@bp.thread
def add_cold():

for i in range(3):
yield sync(request=BEvent("COLD"))

Listing 2: The add_hot and add_cold b-threads. Each
request to pour an amount of hot and cold water three times.

In contrast to many other paradigms, BP grants developers
the flexibility not to be bound by a single predefined behavior
for the implemented system. Instead, the system has the
freedom to select any behavior aligned with all the defined
b-threads. For example, a b-program consisting of the two
b-threads in Listing 2 does not enforce a specific order for
pouring cold and hot water. Consequently, its execution can
produce all sequences containing exactly three occurrences
of the COLD event and three occurrences of the HOT event.
Examples of such sequences include HOT,HOT,HOT,COLD
,COLD,COLD or COLD,HOT,HOT,COLD,HOT,COLD.

To illustrate further, consider that after running the initial
version of the system, a safety concern arises, prompting the
introduction of a new requirement, stating that having two
consecutive HOT events is undesirable. While we can modify
the add_hot b-thread by incorporating new conditions and
statements, the BP paradigm advocates for preserving the
alignment between existing b-threads and their respective
requirements and adding a new b-thread. This approach fosters
an incremental and modular development style, allowing de-
velopers to add or remove behaviors independently without
impacting other b-threads. Thus, we add the control b-
thread in Listing 3, which iteratively waits for the HOT event
and then blocks it while waiting for any subsequent event using
the All event set.

@bp.thread
def control():

while True:
yield sync(waitFor=BEvent("HOT"))
yield sync(waitFor=All(), block=BEvent("HOT"))

Listing 3: The control b-thread, which prevents the HOT
event from occurring consecutively.

The code provided in Listing 4 demonstrates how b-
programs are instantiated and executed in BPpy. A BProgram
class instance is defined with a list of b-threads, an event
selection strategy (arbiter), and an optional listener. The

SimpleEventSelectionStrategy class randomly se-
lects an event from the set of enabled events, i.e., events
that are requested and not blocked, uniformly. Alternative
execution mechanisms can also be employed to resolve this
non-determinism. This flexibility allows for the integration
of various event selection strategies tailored to specific opti-
mization needs, such as resource considerations or predefined
objectives. Further, BPpy supports program listeners—entities
that receive notifications at the initiation and completion of the
b-program or upon event selection during its execution. This
feature facilitates the integration of a b-program within a host
application.

ess = bp.SimpleEventSelectionStrategy()
program_listener = bp.PrintBProgramRunnerListener()

b_program = BProgram(bthreads=[add_hot(), add_cold(),
control_temp()],

event_selection_strategy=ess,
listener=program_listener)

b_program.run()

Listing 4: Instantiating and executing a b-program in BPpy.

While the examples and experiments presented in this paper
use BPpy, we note that BP has been implemented in other
languages, including C++ [20], Java [17], and JavaScript [21].
Some of the ideas presented here can carry over to these
frameworks as well. Additionally, BP has been applied in var-
ious applications, such as a tool suite for model-driven testing
[22], a fully functional nano-satellite [23], and a reactive IoT
building [24], highlighting its versatility and potential.

III. A DEMO OF HOW BP CAN BOOST CODE GENERATION

To illustrate how BP can boost model generation from
requirements, we turn back to the level-crossing example. We
prompted OpenAI’s GPT-4 model once again, instructing it to
implement the level-crossing system according to the require-
ments outlined in Section I. In this attempt, the prompting
asked it to create a b-program representing the system. The
entire prompt we used is provided in the appendix [11], and the
code used to run this prompting is available at https://github.
com/bThink-BGU/Papers-2024-MoDRE-BP-LLM. The out-
put b-program is given in Listing 5.

We can observe that, in contrast to the general implemen-
tation in Listing 1, the b-program implementation complies
with Requirement 1, Requirement 2, and Requirement 4, with
Requirement 3 being amendable with a minor adjustment
(waiting for Lower instead of Leaving). Further, the align-
ment of each b-thread with a requirement makes the generated
model easier to update and maintain.

IV. AN INITIAL EVALUATION OF THE APPROACH

To reinforce our claims, we expanded the level-crossing
example and conducted an initial experiment with 20 system
specifications involving a total of 149 requirements. Among
these specifications, 10 were presented without context, simply
describing systems using generic events (A, B, C, etc.) and
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@bp.thread
def req_1():

while True:
yield sync(waitFor=BEvent("Approaching"))
yield sync(waitFor=BEvent("Entering"))
yield sync(waitFor=BEvent("Leaving"))

@bp.thread
def req_2():

while True:
yield sync(waitFor=BEvent("Approaching"))
yield sync(request=BEvent("Lower"))
yield sync(waitFor=BEvent("Leaving"))
yield sync(request=BEvent("Raise"))

@bp.thread
def req_3():

while True:
yield sync(waitFor=BEvent("Approaching"))
yield sync(block=BEvent("Entering"),

waitFor=BEvent("Leaving"))
@bp.thread
def req_4():

while True:
yield sync(waitFor=BEvent("Approaching"))
yield sync(block=BEvent("Raise"),

waitFor=BEvent("Leaving"))

Listing 5: The level-crossing example, as implemented by GPT
4 as a b-program. The b-program contains a small bug that
can be fixed with a minor adjustment.

including requirements regarding their ordering (e.g., “A must
be followed by B”). The other 10 specifications depicted a sys-
tem within the context of a frame story, as in the level-crossing
example. All GPT 3.5 system implementations and the code
we used for this evaluation are publicly available at https:
//github.com/bThink-BGU/Papers-2024-MoDRE-BP-LLM.

To evaluate the alignment of the implemented systems
with their respective requirements, a sample of 100 system-
generated runs was taken from each implementation and
tested for validity against each requirement. Subsequently,
we computed the number of requirements in which the b-
program implementation exhibited better alignment based on
the generated runs and vice versa. The results are available in
Table I. Out of the 149 requirements, the b-program showed
better alignment in 52 cases, while the non-BP implementation
performed better in 37. The rest of the 60 requirements were
evenly aligned in both approaches. We calculated that the
probability of a random Bernoulli variable producing such
an advantage for BP or less is 95.5%, indicating that the
advantage of BP over plain Python in this evaluation is
statistically significant. We believe that the root cause for this
better alignment lies in BP’s modularity and unified design,
which allowed the model to implement the systems directly.

V. VERIFICATION AND VALIDATION SUPPORT

LLMs often introduce errors that prove challenging for
programmers and other stakeholders to detect, underscoring
the growing importance of validating the generated model
for correctness. We state that the implementation can be
formally verified using techniques such as model-checking,
achieved by isolating and keeping the code that implements
each requirement separate and concise. This enables new
development cycle approaches where, for instance, a new

Specification #Requirements General BP
r1 8 1 3
r2 7 2 1
r3 8 2 4
r4 8 5 1
r5 5 2 3
r6 8 2 4
r7 8 2 2
r8 5 0 5
r9 9 3 5
r10 6 1 3
rs1 4 1 3
rs2 4 1 2
rs3 8 3 0
rs4 10 4 4
rs5 8 1 1
rs6 9 1 3
rs7 9 3 0
rs8 9 0 3
rs9 8 3 1
rs10 8 0 4
Total 149 37 52

Table I: The initial experiment results, with 20 system specifi-
cations. Among these specifications, 10 are presented without
any context (r1-r10), and 10 depict a system within the context
of a frame story (rs1-rs10). Columns General/BP show the
number of requirements out of #Requirements where the
general/BP implementation exhibited better alignment. The
remaining requirements were evenly aligned in both imple-
mentations.

prompt is constructed based on the verification results and fed
back to the LLM. In this section, we introduce BPpy’s model-
checking support, which draws upon extensive research on
the analysis of b-programs [25]–[27]. BPpy facilitates model
checking through both explicit and symbolic modes. In the
explicit mode, the program is validated through assertions in
b-threads using Depth First Search. For instance, Listing 6
demonstrates how Requirement 3 can be verified in the explicit
mode by adding a b-thread, which raises an assertion error if
a train enters while barriers are raised.

@bp.thread
def check():

while True:
e = yield sync(waitFor=[BEvent("Entering"),

BEvent("Lower")])
assert e == BEvent("Lower")
yield sync(waitFor=BEvent("Raise"))

def bp_gen():
ess = bp.SimpleEventSelectionStrategy()
return BProgram(bthreads=[req_1(), req_2(), req_3(),

req_4(), check()],
event_selection_strategy=ess)

ver = DFSBProgramVerifier(bp_gen, max_trace_length=1000)
ok, counter_example = ver.verify()

Listing 6: Verifying Requirement 3 in the level-crossing b-
program using explicit model-checking.

A symbolic model checker mode is available for general
LTL support and larger state space. This mode explores
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only the state spaces of individual b-threads, bypassing the
composite product space. Subsequently, this product space
is analyzed using PyNuSMV [28] (a Python binding for
NuSMV [29]), avoiding the explicit enumeration of all states.
Detailed insights into the automatic translation of b-programs
to SMV models are available in [19]. The verifier operates
in two modes: Binary Decision Diagrams (BDD) and SAT-
based Bounded Model Checking (BMC). The specification to
be verified is written in NuSMV LTL specification format. For
example, Listing 7 demonstrates how Requirement 4 can be
verified symbolically using BDDs.

evt_list=[BEvent("Approaching"),BEvent("Entering"),
BEvent("Leaving"),BEvent("Lower"),BEvent("Raise")]

s="G((event=Approaching)-> (event!=Raise U event=Leaving))"

ver = SymbolicBProgramVerifier(init_bprogram, evt_list)
result, ce = ver.verify(spec=s,

type="BDD",
find_counterexample=True)

Listing 7: Verifying Requirement 4 in the level-crossing b-
program using symbolic model-checking.

VI. CONCLUSION

In this paper, we proposed the behavioral programming (BP)
model-based approach to enhance the use of LLMs automatic
model generation. We illustrate how LLMs can be applied
to translate multifaceted requirements into implementations
without requiring a software design phase by employing BP’s
unified design approach. Further, we suggest that a compre-
hensive environment, with supporting verification and valida-
tion methodology, is imperative for developers to effectively
handle errors produced by LLMs. Moving forward, we plan
to conduct more extensive and rigorous experiments. These
experiments will involve additional model-driven approaches
and an analysis of their formal verification methodologies
within the context of models generated by LLMs.
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