Boostmg LLM-Based
Software Generation by
Aligning Code with
Requirements

Tom Yaacov, Achiya Elyasaf, Gera Weiss

2212 1M1-12 h0'0N2NIN
. . . Ben-Gurion University of the Negev
14th International Model-Driven Requirements

Engineering (MoDRE) workshop

Level Crossing System Example

1) When atrain passes, the sensor system activates the
exact event order: approaching, entering, and leaving.

2) The barriers are lowered when a train approaches and
then raised.

3) Atrain may not enter while barriers are raised.

4) The barriers may not be raised while a train passes, i.e., it
approached but did not leave.

N. Leveson and J. Stolzy, “Safety Analysis Using Petri Nets,” IEEE Transactions on Software Engineering, vol. SE-13, no. 3,
pp. 386-397, 1987.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Level Crossing System Example
A general Python implementation by GPT 4:

def railway_crossing_events():
evts = ["Approaching", "Entering", "Leaving", "Lower", "Raise"]
sequence = []
mandatory_sequence = ["Approaching”, "Lower", "Entering",

"Leaving", "Raise"]

sequence.extend(mandatory_sequence)
pre_evts = random.sample(evts, k=random.randint(@, len(evts)))
sequence = pre_evts + sequence

post_evts = random.sample(evts, k=random.randint(®@, len(evts)))

sequence += post_evts
if sequence[-1] !'= "Raise":
sequence.append("Raise")

return sequence

Challenges of LLM-Based Code Generation

e Weidentify two main factors:

o Programmers must manually design the software
and LLMs only implement parts of it.

o LLMsintroduce errors that are challenging for
programmers and stakeholders to identify.

Behavioral Programming (BP)

Requirements Execution engine Behavior

Tart

Robotics

David Harel, Assaf Marron, Gera Weiss. "Behavioral programming." Communications of the ACM 55.7 (2012): 90-100.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Behavioral Programming (BP)

1) “Pour some small amount of hot water three times.” % 4%
Hot - Cold
Water

@b_thread Water
def pour_3_hot():

for i in range(3):

yield {request: Hot}

Yaacov, Tom. "BPpy: Behavioral Programming in Python." SoftwareX 24 (Dec. 2023), 101556.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Behavioral Programming (BP)

2) “Pour some small amount of cold water three times.”
[

@b_thread @b_thread

def pour_3_hot(): def pour_3_cold():
for i in range(3): for i in range(3):

yield {request: Hot} yield {request: Cold}

Water

'Water

a¥s

Hot

Cold

Possible system traces:

Cold
Hot
Hot

Cold
Hot

Cold

Hot
Cold

Hot
Cold

Hot
Cold

Yaacov, Tom. "BPpy: Behavioral Programming in Python." SoftwareX 24 (Dec. 2023), 101556.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Hot

Hot

Hot
Cold
Cold
Cold

Behavioral Programming (BP)

3) “Cold water should be poured between any two pouring of hot water.” ! t% %
(6}

Scenarios

@b_thread
Request Block
i

def prevent_consecutive_hot():

I . Cold
@b_thread I @b_thread WG Water
def pour_3_hot(): : def pour_3_cold(): '
for i in range(3): | for i in range(3): Wait
yield {request: Hot} : yield {request: Cold} ““Tj““j 1
[
[

While True:
yield {waitFor: Hot}
yield {waitFor: Cold, block: Hot}

Behavioral Programming (BP)

@b_thread @b_thread

def pour_3_hot(): def pour_3_cold():
for i in range(3): for i in range(3):

yield {request: Hot} yield {request: Cold}

@b_thread
def prevent_consecutive_hot():
While True:
yield {waitFor: Hot}
yield {waitFor: Cold, block: Hot}

Hot

Water

Cold
Hot

Cold
Hot

Cold
Hot

Cold
Water

Hot
Cold

Hot
Cold
Cold

Hot

Cold

Cold
Hot

Cold
Hot

Hot
Cold
Cold
Cold

Hot

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Level Crossing System Example
A BPpy implementation by GPT 4:

@b_thread @b_thread
def requirement_1(): def requirement_3():
while True: while True:
yield {waitFor: Approaching} yield {waitFor: Approaching}
yield {waitFor: Entering} yield {block: Entering,
yield {waitFor: Leaving} waitFor: Led€ing}
@b_thread @b_thread Lower
def requirement_2(): def requirement_4():
while True: while True:
yield {waitFor: Approaching} yield {waitFor: Approaching}
yield {request: Lower} yield {block: Raise,
yield {waitFor: Leaving} waitFor: Leaving}

yield {request: Raise}

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Initial Evaluation

e Theinitial experiment involved 20 system with a tota| ~ —Seecication | Mequitements| General | PP
of 149 requirements. r2 7 1

ii : : i

e We compared GPT’s BP and General Python P : 2 y
implementation based on sampled system traces. i 5 0 5

0 ‘ | :

e BPimplementation showed better alighment in 52 = : . 4
requirements, while the general implementation in 37. = 5 " ¢

o 5 | ;

e Statistical significance - probability of a random i g : 2
Bernoulli variable to produce such advantage is 95.5% e : : !

Total | 149 | 37 | 52

https://github.com/bThink-BGU/Papers-2024-MoDRE-BP-LLM

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

https://github.com/bThink-BGU/Papers-2024-MoDRE-BP-LLM

Verification and Validation Support

e BPpy support model checking through both explicit
and symbolic modes.

Counter example

e Explicit mode - program is validated through
assertions in b-threads using DFS.

Implementation

e Symbolic mode (NuSMV):

o Provides general LTL support.

o Avoids explicit enumeration of all program states.

Yaacov, Tom. "BPpy: Behavioral Programming in Python." SoftwareX 24 (Dec. 2023), 101556.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements

Tart

Robobics

Thank you for

listening
tomya@post.bgu.ac.il

