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Level Crossing System Example

1) When atrain passes, the sensor system activates the
exact event order: approaching, entering, and leaving.

2)  The barriers are lowered when a train approaches and
then raised.

3) Atrain may not enter while barriers are raised.

4)  The barriers may not be raised while a train passes, i.e., it
approached but did not leave.

N. Leveson and J. Stolzy, “Safety Analysis Using Petri Nets,” IEEE Transactions on Software Engineering, vol. SE-13, no. 3,
pp. 386-397, 1987.
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Level Crossing System Example
A general Python implementation by GPT 4:

def railway_crossing_events():
evts = ["Approaching", "Entering", "Leaving", "Lower", "Raise"]
sequence = []
mandatory_sequence = ["Approaching”, "Lower", "Entering",

"Leaving", "Raise"]

sequence.extend(mandatory_sequence)
pre_evts = random.sample(evts, k=random.randint(@, len(evts)))
sequence = pre_evts + sequence

post_evts = random.sample(evts, k=random.randint(®@, len(evts)))

sequence += post_evts
if sequence[-1] !'= "Raise":
sequence.append("Raise")

return sequence




Challenges of LLM-Based Code Generation

e Weidentify two main factors:

o Programmers must manually design the software
and LLMs only implement parts of it.

o LLMsintroduce errors that are challenging for
programmers and stakeholders to identify.




Behavioral Programming (BP)
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David Harel, Assaf Marron, Gera Weiss. "Behavioral programming." Communications of the ACM 55.7 (2012): 90-100.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements



Behavioral Programming (BP)

1) “Pour some small amount of hot water three times.” % 4%
Hot - Cold
Water

@b_thread Water
def pour_3_hot():

for i in range(3):

yield {request: Hot}

Yaacov, Tom. "BPpy: Behavioral Programming in Python." SoftwareX 24 (Dec. 2023), 101556.
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Behavioral Programming (BP)

2) “Pour some small amount of cold water three times.”
[

@b_thread @b_thread

def pour_3_hot(): def pour_3_cold():
for i in range(3): for i in range(3):

yield {request: Hot} yield {request: Cold}
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Possible system traces:
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Yaacov, Tom. "BPpy: Behavioral Programming in Python." SoftwareX 24 (Dec. 2023), 101556.
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Behavioral Programming (BP)

3) “Cold water should be poured between any two pouring of hot water.” ! t% %
(6}

Scenarios

@b_thread
Request Block
i

def prevent_consecutive_hot():

I . Cold
@b_thread I @b_thread WG Water
def pour_3_hot(): : def pour_3_cold(): '
for i in range(3): | for i in range(3): Wait
yield {request: Hot} : yield {request: Cold} ““Tj““j 1
[
[

While True:
yield {waitFor: Hot}
yield {waitFor: Cold, block: Hot}




Behavioral Programming (BP)

@b_thread @b_thread

def pour_3_hot(): def pour_3_cold():
for i in range(3): for i in range(3):

yield {request: Hot} yield {request: Cold}

@b_thread
def prevent_consecutive_hot():
While True:
yield {waitFor: Hot}
yield {waitFor: Cold, block: Hot}
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Level Crossing System Example
A BPpy implementation by GPT 4:

@b_thread @b_thread
def requirement_1(): def requirement_3():
while True: while True:
yield {waitFor: Approaching} yield {waitFor: Approaching}
yield {waitFor: Entering} yield {block: Entering,
yield {waitFor: Leaving} waitFor: Led€ing}
@b_thread @b_thread Lower
def requirement_2(): def requirement_4():
while True: while True:
yield {waitFor: Approaching} yield {waitFor: Approaching}
yield {request: Lower} yield {block: Raise,
yield {waitFor: Leaving} waitFor: Leaving}

yield {request: Raise}
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Initial Evaluation

e Theinitial experiment involved 20 system with a tota| ~ —Seecication | Mequitements| General | PP
of 149 requirements. r2 7 1

ii : : i

e We compared GPT’s BP and General Python P : 2 y
implementation based on sampled system traces. i 5 0 5

0 ‘ | :

e BPimplementation showed better alighment in 52 = : . 4
requirements, while the general implementation in 37. = 5 " ¢

o 5 | ;

e Statistical significance - probability of a random i g : 2
Bernoulli variable to produce such advantage is 95.5% e : : !

Total | 149 | 37 | 52

https://github.com/bThink-BGU/Papers-2024-MoDRE-BP-LLM
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Verification and Validation Support

e BPpy support model checking through both explicit
and symbolic modes.

Counter example

e Explicit mode - program is validated through
assertions in b-threads using DFS.

Implementation

e Symbolic mode (NuSMV):

o Provides general LTL support.

o Avoids explicit enumeration of all program states.

Yaacov, Tom. "BPpy: Behavioral Programming in Python." SoftwareX 24 (Dec. 2023), 101556.

~ Boosting LLM-Based Software Generation by Aligning Code with Requirements



Tart

Robobics

Thank you for

listening
tomya@post.bgu.ac.il




